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We analyze the evolution of political organizations using a model in which agents change their
opinions via two competing mechanisms. Two agents may interact and reach consensus, and addi-
tionally, individual agents may spontaneously change their opinions by a random, diffusive process.
We find three distinct possibilities. For strong diffusion, the distribution of opinions is uniform and
no political organizations (parties) are formed. For weak diffusion, parties do form and furthermore,
the political landscape continually evolves as small parties merge into larger ones. Without diffusion,
a pattern develops: parties have the same size and they possess equal niches. These phenomena are
analyzed using pattern formation and scaling techniques.

PACS numbers: 02.50.Ey, 05.45.-a, 89.65.-s, 89.75.-k

Interacting particle systems and agent-based models
are becoming increasingly important in the behavioral,
social, and political sciences [1–3]. There is compelling
evidence that collective phenomena emerging in social
contexts can be attributed to basic agent-agent inter-
actions [4]. Statistical physics and nonlinear dynamics
methods naturally apply for analysis of simplified inter-
acting particle systems [5]. Paradigms such as scaling,
criticality, and universality, emerging from such quantita-
tive analysis, can guide and validate detailed agent-based
models, used to simulate real-world situations.

In opinion dynamics, recent studies focus on the emer-
gence of cooperative phenomena including spatial orga-
nization, the formation of coherent structures (political
parties), and the transition from unity to discord [5–10].
In particular, the remarkably simple compromise process,
in which pairs of agents reach a fair compromise, captures
familiar political systems: one-party, two-party, etc, [11–
17].

This investigation generalizes the compromise process
by allowing individual agents to change their opinions in
a random, diffusive fashion. It is shown that diffusion is
an essential element of opinion dynamics. It generates
realistic lifecycles of political organizations and addition-
ally, it governs the transition from a disorganized to an
organized political system.

The competition between compromise and diffusion is
quantified by one parameter, the diffusion constant. For
strong randomness, the political system is disorganized
and the distribution of opinions is uniform. For weak
randomness, political organizations do form and they
evolve constantly. Large parties overtake smaller ones
and the separation between neighboring parties grows
indefinitely. Without randomness, a stationary pattern
with evenly-spaced, evenly-sized parties forms.

In our model, the opinion of an agent is quantified by
an integer n, and it changes via two separate processes.
The first is compromise. Two randomly selected agents
reach consensus, provided that their opinion difference is

smaller than a fixed threshold, set to two for simplicity,

(n− 1, n+ 1)
1
−→ (n, n). (1)

The compromise process occurs at a constant rate, set to
1. The second process is diffusion. An agent may change
his or her opinion in a random fashion,

n
D
−→ n± 1. (2)

This is merely diffusion, a random walk in opinion space
with D the diffusion constant. Of course, the total pop-
ulation is conserved. The total opinion is strictly con-
served in compromise events, but it is conserved only on
average for diffusive moves.
The compromise process mimics the human tendency

for resolving conflicts [4], and the threshold incorporates
a certain degree of conviction in one’s own opinion. Diffu-
sion accounts for the possibility that people may change
their opinion either on their own or due to news events,
editorials, etc.
The density Pn(t) of agents with opinion n at time t

obeys the master equation

dPn
dt

= 2Pn−1Pn+1 − Pn(Pn−2 + Pn+2) (3)

+ D(Pn−1 + Pn+1 − 2Pn).

The total population and the total opinion are conserved:
∑

n Pn = const and
∑

n nPn = const. Interactions be-
tween nearest neighbors were ignored because conserva-
tion of the total opinion implies that they do not con-
tribute to the rate equations. We analyze in order one-
party, two-party, and multi-party dynamics.
One-party dynamics. Consider the initial condition
where m people have the opinion −1 and as many have
opinion 0, Pn(0) = m(δn,−1 + δn,0). This state corre-
sponds to a well-defined political organization, namely, a
party. Its size, equal to the total population, is taken to
be large, mÀ D. Clearly, throughout the evolution, the
opinion distribution remains symmetric, Pn = P−1−n.
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FIG. 1: One-party dynamics. Shown is Pn(t = 1) for m =
103. The theoretical prediction for the core (5) is shown for

reference. The inset, where Φ(z) is plotted versus z = nt−1/2,
shows the scaling behavior of the tail at large times t = 103

(circles) and t = 104 (line).

Equation (3) supports the trivial steady-state where the
opinion distribution vanishes, Pn = 0, as well as one in
which compromise and diffusion balance

Pn−1Pn+1 = DPn. (4)

Solving this equation recursively with P−1 = P0

gives the periodic state (P−1, P0, P1, P2, P3, P4) =
(P0, P0, D,D

2/P0, D
2/P0, D), with Pn = Pn+6. Start-

ing with the one-party initial condition, the distribution
has a localized core that matches this periodic structure
over a few lattice sites,

(P0, P1, P2) ∼= (m,D,D
2m−1). (5)

This is confirmed by numerical integration of (3), as
shown in figure 1 [18]. Using the conservation law
P0 + P1 + P2

∼= m, Eq. (5) can be refined (P0, P1, P2) ∼=
(m−D,D,D2m−1). The core is established very quickly:
from the short time behavior, Pn(t) ∼= m (Dt)n, we im-
mediately deduce the stabilization time scale m−1. The
larger the party, the faster it is shaped.
Outside the core, diffusion dominates over compromise

since P 2 ¿ DP when P ¿ D. The tail obeys the diffu-
sion equation dPn/dt = D(Pn−1 + Pn+1 − 2Pn) for n ≥ 2
with the boundary condition P2(t) = D2m−1; this is the
standard problem of diffusion with a source [19]. Conse-
quently, the tail is characterized by the diffusive length
scale ` ∼ t1/2 and its shape is asymptotically self-similar

Pn(t)→ m−1Φ
(

n t−1/2
)

(6)

with Φ(0) = const. Henceforth, the explicit dependence
on the diffusion constant is dropped. The tail popu-
lation, µ = 2

∑

n≥2 Pn, grows with time according to
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FIG. 2: Two-party dynamics. Shown are results of numerical
integration with m1 = 2m2 = 200 and l = 90 at an early time
t = 103 (solid lines) and a later time t = 2 × 105 (dashed
lines). The top plot shows the cores, and the bottom plot
shows the tail.

µ ∼ m−1t1/2. Eventually, the entire population is trans-
ferred from the core to the tail and the party dissolves.
The lifetime of the party τ is estimated from µ ∼ m to
be

τ ∼ m4. (7)

This time scale grows rapidly with the party size, indi-
cating that diffusive loss is negligible over a substantial
period and that large parties are long-lived.
In summary, a single party has a quasi-stationary state

consisting of a fixed, tightly confined core and an ex-
tended diffusive tail. Over its lifetime, the core of the
party is immobile and it is unaffected by the random
changes in position of its affiliates. The core contains
the bulk of the population, its hight equals the party
size and its depth is inversely proportional to the size.
Ultimately, an isolated party dissolves. Its remnant is
a diffusive cloud centered at the original party position
with total population equal to the initial party size.
Two-party dynamics. To find out how two neighboring
parties interact, we start start with opinions −3 and −2
of m1 people each, plus opinions l+ 2 and l+ 3 with m2

people each, Pn = m1(δn,−2+δn,−3)+m2(δn,l+2+δn,l+3),
corresponding to two large parties, m1,m2 À D, that are
separated by a large distance lÀ 1.
Initially, the parties do not interact and each one fol-

lows the one-party dynamics above. When their diffu-
sive tails meet, which occurs on the diffusive time scale
l2, the distribution reaches a steady-state in the region
separating the two. It obeys the discrete Laplace equa-
tion Pn+1 + Pn−1 − 2Pn = 0 with the boundary condi-
tions dictated by the two cores P0 ∝ m−1

1 and Pl ∝ m−1
2 .

Therefore, there is a linear profile (figure 2)

Pn ∝
1

m1

+

(

1

m2

−
1

m1

)

n

l
(8)
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FIG. 3: Multi-party dynamics. Shown are representative
snapshots for D = 3 (a-c), D = 1 (d-f), and D = 0 (g-i)
at an early time (left), intermediate time (middle), and late
time (right). Shown is Pn versus n using lines (D = 3, D = 0).
Also shown is the total party size and position using bars with
hight equal to the party size (D = 1, D = 0). The plots are
results of numerical integration of (3) with ε = 0.1 for D 6= 0
and ε = 0 for D = 0.

for 0 ≤ n ≤ l. As a result, there is a slow and
steady flux from the smaller party into the larger one,
J = |Pn+1−Pn|, or explicitly J ∝ l−1(m−1

< −m−1
> ) with

m< = min (m1,m2) and m> = max (m1,m2). We note
that diffusion enables the two parties to interact. The
flux is proportional to the difference in depth, and it is
inversely proportional to the separation. Eventually, the
small party is depleted. The depletion time can be esti-
mated from the flux, T ∼ m</J , as

T ∼ l m2
< (9)

where the dependence on the larger population was
tacitly ignored. An improved estimate for the deple-
tion time can be obtained from the evolution equations
dm>/dt = −dm</dt = J .

We conclude that there is a steady flux from the small
party into its neighboring larger party resulting in the
eventual demise of the smaller party. Thus, the result
of the interaction is deterministic as it always leads to
merger. The lifetime of the small party grows quadrat-
ically with its size. It also increases linearly with the
separation or “niche”. While the larger party grows dur-
ing the merger, this growth does not affect its position;
it is practically immobile.

Multi-party dynamics. The uniform state Pn = const is
stationary. Any uniform state can be transformed by an
appropriate rescaling of the opinion distribution, time,
and the diffusion constant into the state Pn = 1, so
we address this case. To investigate the stability of the
uniform state, we considered heterogeneous initial condi-
tions with Pn(0) a randomly chosen number in the range
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FIG. 4: The party size m versus position n. Shown are results
of numerical integration of (3) with D = 1, N = 103, and
ε = 0.1 at times t = 103 (solid line) and t = 104 (dashed
line). The bar hight equals the party size.

[−1−ε, 1+ε] with ε¿ 1. The system is large, 1 ≤ n ≤ N
with N À 1.
Stability of the uniform state is studied using small

periodic perturbations, Pn = 1 + φn, with φn ∝ eikn+λt.
From (3), the growth rate is

λ = 2(2 cos k − cos 2k − 1) + 2D(cos k − 1). (10)

The perturbation decays if its wave-number is sufficiently
large, |k| > k0 with k0 = cos

−1(D/2).
Uniform Distribution. Since k0 = 0 for D = 2, there is a
critical diffusivity

Dc = 2. (11)

For strong diffusion, D > Dc, perturbations decay ex-
ponentially with time and the uniform state is rapidly
restored, regardless of the initial conditions (figures 3a-
3c). Just above the critical diffusivity, long wavelength
perturbations are long lived: their decay time diverges
∝ (D−Dc)

−2, following from λ ∝ (D−Dc) k
2 as D ↓ Dc.

In any case, compromise interactions become irrelevant
and diffusion dominates. As a result, the opinion dis-
tribution approaches a structureless state: the political
system is disorganized as no parties are formed.
Coarsening. For weak diffusion, D < Dc, perturbations
to the initial state are magnified and parties are quickly
formed (figure 3d-3f). The system develops a mosaic of
parties. Since the initial state is heterogeneous, the size
of the parties and the separation between them vary. The
evolution follows straightforwardly from the two-party
dynamics and there is a linear profile in regions separat-
ing parties. Small parties merge into larger neighboring
parties, and as a result, the remaining parties grow in
size and in niche (figure 4).
Let us assume that the typical size is m. The popu-

lation density must be constant, so the typical niche is
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FIG. 5: The average party size versus time. Shown are simu-
lation results (solid line) obtained using D = 1 and N = 105

and a line of slope = 1/3 (dashed line) for reference.

of the same order, l ∼ m. Substituting these scales into
the depletion time (9) yields T ∼ m3 and since time is
the only relevant time scale, the typical size growth law
is (figure 5)

m ∼ t1/3. (12)

Asymptotically, the system reaches a self-similar state
where the party size is characterized by the typi-
cal scale m and consequently, the party size distribu-
tion, Qm, becomes self-similar in the long time limit,
Qm ∼ t−1/3Ψ(mt−1/3). Our numerical simulations con-
firm this, along with (12).
The lifetime of a party is governed by the interplay

between size and niche. Typically, the larger the party,
the longer it survives, but a small party may still outlast
a larger neighbor if it has a large enough niche. Except
for this size-niche competition, the coarsening mechanism
is similar to Lifshitz-Slyozov ripening [20].
Pattern Formation. Without diffusion, the system ap-
proaches a state where Pn−1Pn+1 = 0 for all n; there
is no evolution and parties are localized to either one or
two sites [16]. For a narrow political spectrum, consen-
sus is reached and there is a single party. As the size of
the spectrum increases, the number of parties undergoes
a series of bifurcations and there may be two off-center
parties, three parties, etc [11, 16].
Asymptotically, the number of parties grows linearly

with the political spectrum N because the parties are
equally-spaced (figure 3i). The spacing equals the party
size, as follows from conservation of population. This
pattern formation can be understood using linear sta-
bility analysis. We demonstrate this for uniform initial
distributions.
Consider the uniform initial condition: Pn(0) = 0 for

n < 0 and Pn(0) = 1 for n ≥ 0. This state is unstable
with respect to perturbations that propagate from the
boundary into the unstable uniform state (figures 3g-3i).

A small periodic disturbance Pn = 1 + φn with φn ∝
exp[i(kn−ωt)] is characterized by the dispersion relation
ω = 2i(2 cos k−cos 2k−1) according to the diffusion-free
evolution equation (3). A saddle point analysis shows
that the propagation velocity v obeys [21]

v =
dω

dk
=
Im[w]

Im[k]
. (13)

The solution is k = kselect + iλ with the selected wave
number kselect = 1.183032. The decay constant λ =
0.467227 characterizes the exponential decay far into the
unstable state, φn ∼ exp[−λ(n − vt)]. The propagation
velocity is v = 3.807397 and the period of the pattern is
Lselect = 2π/kselect = 5.311086. Our numerical studies
confirm these results.
In the absence of boundaries, i.e., in a periodic sys-

tem, the perturbation with the largest growth rate dom-
inates and sets the wavelength. From (10), the growth
rate is λ = 2(2 cos k − cos 2k − 1); it is periodic in k,
λ(k) = λ(k + 2π). The uniform state is unstable with
respect to long wavelength perturbations with k < π/2.
Also, the growth rate is maximal at kmax = π/3 and the
corresponding period, Lmax = 2π/kmax, is Lmax = 6.
Numerically, we find that the actual period falls be-

tween the two linear stability values

L ≈ 5.67. (14)

Starting from a compact distribution, perturbations with
the selected period are generated by the boundary and
they propagate into the interior. As the disturbance
reaches the interior of the system, perturbations with a
smaller wavelength, that have a larger growth rate, dom-
inate. This argument suggests the above estimates as
bounds for the period Lselect < L < Lmax. These bounds
are tight, so linear stability analysis yields a very good
approximation for the period. Yet, the pattern selection
mechanism is intrinsically nonlinear and obtaining the
exact period remains a challenge.
In summary, we found that the level of noise (diffusion)

determines the nature of the political system. Strong
noise leads to a uniform distribution of opinions with ev-
ery possible opinion equal in weight. With weak noise,
the system organizes into political parties and the po-
litical landscape undergoes coarsening with large parties
continuously overtaking small ones. Without noise, the
system evolves into a frozen pattern of parties with equal
weights and equal separations.
Several qualitative features are surprisingly realistic.

The lifecycle of a party includes formation, growth, and
demise. Isolated parties have a fixed position and their
lifetime grows rapidly with their size, but ultimately, any
party dissolves. When two parties interact, the smaller
party loses ground to the larger party at a steady rate.
A small party with a large niche can be long lived.
Diffusion plays a critical role. It facilitates interaction

between parties and it is responsible for the dissolution
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of parties. Moreover, the patterned state is unstable with
respect to addition of diffusion. We conclude that spon-
taneous opinion changes are an integral part of opinion
dynamics.
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